COMPARISON OF COARSE- AND FINE-GRAINED QUARTZ TEXTURES USING THE POLE DENSITY INDEX (PDI)

Renée Heilbronner (1), K.Gerald van den Boogaart (2), Helmut Schaeben (2)

 (1) Department of Earth Sciences, Basel University, Switzerland
(2) Mathematics and Computer Sciences in Geology, Freiberg University of Mining and Technology, Germany

COMPARISON OF COARSE- AND FINE-GRAINED QUARTZ TEXTURES USING THE POLE DENSITY INDEX (PDI)

...bridges ...visualization

K.V. Mardia, key note lecture IAMG2002

deformed

annealed

Exp. deformation & anneling BHQ Quartzite

expts.: Jan Tullis

deformed

annealed

regime 2

CIP orientation imaging

www.unibas.ch/earth/micro/

Basel University EARTH SCIENCES

Contact

<u>Geological Institute</u> Mineralogical Institute Visitor Information

Research Groups

Alpine Geology & Tectonics Rock Deformation & Microstructure Sedimentology Paleontology Applied Geology Petrology Theoretical Petrology Analytical Geochemistry Mineralogy Gemmology

People

<u>Staff</u> <u>Students</u> ...by research groups

Studying Earth Sciences Lectures Courses and workshops Fieldtrips

Basel Geosciences Partners Dept. Earth Sciences Dept. Geography Museum of Natural History

ROCK DEFORMATION AND MICROSTRUCTURE

TEACHING LECTURE NOTES COURSE NOTES

RESEARCH PROJECTS SNEAK PREVIEW

PICTURES ORIENTATION IMAGES MISCELLANEOUS

LINKS GEOLOGY - RELATED

PEOPLE

STAFF Renée Heilbronner Holger Stunitz

INTRANET use of computers Bernoullianum 2001 / 2002

POSTDOCS

Michael Stipp

last update 20-JUNE-2002

WORKSHOP IMAGE ANALYSIS etc....July 1-5, 2002 SCHEDULE

SUPPORT ON-LINE MANUALS SOFTWARE DOWNLOAD

MICROSCOPY MICROSCOPY LAB

OTHERS

PhD STUDENTS

Nils Oesterling Almar de Ronde Nyrike Keulen

FORMER

Christian Pauli Mirjam van Daalen Robert Kruse

c-axis pole figure stereographic projection of azi-inc histogram

4.04

5.4

2.50

8.50

cf Xray texture

c-axis pole figure bulk fabric

cf Xray texture

c-axis pole figure of porphyroclasts

cf Xray texture

c-axis pole figure of recrystallized grains

porphyroclasts

recrystallized grains

cf Xray texture bulk

does annealing reduce or increase texture strength ??

is the bulk texture stronger or weaker than its parts ??

c-axis pole figure bulk fabric FLAT

c-axis pole figure of porphyroclasts FLAT

c-axis pole figure of recrystallized grains FLAT

porphyroclasts

recrystallized grains

12.26

how many measurements?

Sample w920	1200-900	meas. pixels	720-560	meas. grains	720·560 flat
total no. of pixels	1'080'000		403'200		403'200
bulk	3.06	390'000	3.82	3584	6.92
porphyroclasts	4.98	187'000	6.53	172	12.26
recrystallized	2.69	134'000	3.55	3424	5.42

- Burlini, L. & Kunze, K. 2000. Fabric and seismic properties of Carrara marble mylonite. *Physics and Chemistry of the Earth (A)*, 25, 133-139.
- Mathies, S. & Wagner, F. 1996. On the 1/n law in texture related single orientation analysis. Phys. Stat. Sol. B196, K11.

c-axis pole figure bulk fabric

c-axis pole figure bulk fabric 1/2 · 1/2

c-axis pole figure bulk fabric 1/4 · 1/4

c-axis pole figure bulk fabric 1/8 · 1/8

c-axis pole figure bulk fabric 1/16 · 1/16

c-axis pole figure bulk fabric 1/32 · 1/32

CPO max of continuous **CIP** as f(undersampling)

mathematical definition of PDI

pole density index (PDI)

$$I[\hat{P}_{\mathbf{c}}(\circ)] = \oint \hat{P}_{\mathbf{c}}^{2}(\mathbf{r}) \mathrm{d}\mathbf{r} = \oint \left(\frac{1}{n} \sum_{i=1}^{n} k(\mathbf{r}_{i}'\mathbf{r})\right)^{2} \mathrm{d}\mathbf{r} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} V_{\mathbf{k}}(\mathbf{r}_{i}'\mathbf{r}_{j})$$

expected value of PDI

$$\mathbf{e}(I[\hat{P}_{\mathbf{c}}]) = \oint \mathbf{e}(\hat{P}_{\mathbf{c}}(\mathbf{r})^2) d\mathbf{r} = \oint \mathbf{e}[\hat{P}_{\mathbf{c}}(\mathbf{r})]^2 d\mathbf{r} + \oint \operatorname{var}(\hat{P}_{\mathbf{c}}(\mathbf{r})) d\mathbf{r}$$

second term depends on no. of c-axes and spatial dependencies

$$\operatorname{gvar}(\hat{P}_{\mathbf{c}}(\circ)) \underset{df}{=} \oint \operatorname{var}(\hat{P}_{\mathbf{c}}(\mathbf{r})) d\mathbf{r} \propto n > 0$$

Unbiased estimator of $I[P_c]$

$$\hat{I}[P_{\mathbf{c}}] = I[\hat{P}_{\mathbf{c}}] - g\hat{var}(\hat{P}_{\mathbf{c}}(\circ))$$

	max of CPO		pole density index (PDI)		different types of
	def.	ann.	def.	ann.	CPO
	3.86	3.84	5.042	3.771	•small circles
	13.87	6.99	10.53	6.282	•single maximum
	3.67	3.44	5.027	4.727	•small circles
	6.77	5.74	2.290	2.400	•single girdle

0	0	
la		
De		
°	0	
	4	
		72
-		
0	0	
		-
1.5		

Sec. 1

size of neighborhood		pole de index (l	ensity PDI)	effect of
def.	ann.	def.	ann.	CONCOUN
25	17	5.137 5.042	3.807 3.771	uncorrected corrected
10	14	10.56 10.53	6.332 6.282	uncorrected corrected
10	14	5.160 5.027	4.802 4.727	uncorrected corrected
40	18	2.333 2.290	2.449 2.400	uncorrected corrected

ect of rection

Discussion

strength of CPO weakening - strengthening w/r to type CPO (skeleton) weakening - strengthening unbiased

type of CPO ("skeleton") single maximum girdle small circle

"intuitive" value of PDI vs CPO max

open questions

what is the "bulk texture"

PDI for other axes PDI for ODF

Size of correlation area? Automatic or presribed (as now)

Absolute volume change per direction ? Misor?